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(57) ABSTRACT

Representing a transparent object as a summation of substan-
tially zero step functions of a visibility curve for the object.
An array may be used to store nodes to represent the visibility
function. The size of the array may be limited to be storable
within a memory of an on-chip graphics processing unit.
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1
RENDERING TRANSPARENT PRIMITIVES

BACKGROUND

This relates generally to graphics processing and particu-
larly to techniques for rendering transparent images.

Graphics processing continues to address the problem of
rendering transparent objects in real-time. Renderers deter-
mine the amount of light transmitted by all objects between a
given fragment and the viewer. Ray tracers compute this
quantity as a result of tracing rays from the viewing position
into the scene. However, rasterizers generate fragments in any
order, collect transmittance information from each fragment
and use it to determine the final pixel color after all partial
occlusions are determined. There are a number of exact and
approximate methods for handling transparency in the raster-
izer.

Ifa fragment is at a distance z, from the viewer, has color c;
and transmittance 1-a,, and vis(z) represents a transmittance
between the fragment in the viewer, this contribution is given
by:

c,avis(z;)

ey
with the total contribution of many overlapping fragments
given by:

2 "covis(z)

@

While the transmittance and color of each fragment are
known during the fragment shading, computing transmit-
tance vis(z,) is the focus of rasterization transparency algo-
rithms.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a depiction of visibility curves for thin light
blockers in accordance with one embodiment of the present
invention;

FIG. 2 is a depiction of top versus bottom node encoding in
accordance with one embodiment of the present invention;

FIG. 3 is a depiction of underestimated and overestimated
node compression in accordance with one embodiment;

FIG. 4 is a flow chart for one embodiment of the present
invention; and

FIG. 5 is a hardware depiction for one embodiment of the
present invention.

DETAILED DESCRIPTION

An adaptive transparency algorithm may be used to render
transparent primitives by capturing an approximate visibility
function for each pixel. In some embodiments, all fragments
are first stored before compositing them. However, with
graphics hardware that implements mutex-protected read-
modify-write operations from fragment shaders, the algo-
rithm may directly render the visibility representation in a
fixed memory allocation. An adaptively compressed visibility
representation may be stored in a fixed amount of memory,
that may be efficiently constructed and sampled while ren-
dering in some embodiments.

The visibility function vis(z) carries all the information
relative to the fragment depth ordering and transmittance and
its properties, as described in equation 2. A general method
for determining transparency is to (1) render fragments and to
build the representation of visibility and (2) render fragments
and composite them using equation 2.

As shown in FIG. 1, the piecewise linear approximation of
avisibility curve, assuming infinitely thin light blockers, may
be represented as a collection of step functions. Specifically:
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vis(2)Z"(1-0H(z-2,) 3

where H(x) is the Heavisde step function:

0 x=0
1 x>0

Hix) = {

Each segment may be represented with a single node as
shown in FIG. 2. Because the first node’s transmittance value
is always equal to one, representing no transparent fragments
between the depth and the viewer, the transmittance value
encoded by the next node, which is also always equal to one,
is redundant. On the other hand, the third node carries valu-
able information. Encoding the bottom nodes of the step
functions enables representation of the full visibility curve
with one less node than with top encoding.

In FIG. 2, top and bottom encoding are depicted. Top
encoding selects the node with a higher transmittance value,
at the same depth, and bottom encoding selects the node with
a lower transmittance value, at the same depth.

This visibility approximation is therefore a set of nodes
containing a visibility value, ordered by depth, stored in a
fixed length array. Fragments can be added in any order by
inserting a new node into the array according to the frag-
ment’s distance from the camera with a visibility initially
equal to the previous node. Then its visibility and the visibil-
ity of all nodes behind it are multiplied by 1-a.,.

Ifthe array is full, then a new node insertion is followed by
a compression that removes one node and brings the array
back to its maximum allowed size. If we simply remove a
node then, as shown in FIG. 3, the compressed visibility
function is always overly transmissive. An alternative is to set
the visibility of the previous node to that of the removed node,
producing a less transmissive visibility approximation.

The node to be removed may be selected by minimizing the
change in integral over the visibility function. Thus, the node
to remove j, is given by:

argmin{min(min(z;, -z;z,-z;_ ) (vis(z;_;)-vis(z;)) }

where candidate nodes are chosen so as to not overrun the
array.

Underestimating and overestimating compression strate-
gies are not symmetric from an image quality standpoint. The
underestimate technique generally produces less objection-
able artifacts because overestimating visibility makes frag-
ments in the compressed segment more visible. Underesti-
mating deemphasizes them. Selecting which technique to use
on a node-by-node basis produces less overall error, but may
introduce higher frequency artifacts. In some embodiments
the underestimating compression strategy may be used.

The piecewise constant approximation of the visibility
curve may be implemented by a summation of substantially
zero step functions. A step function or stepped function is a
function that has different constant values on adjacent sub-
intervals, so it has discontinuities at the ends of each interval.
“Substantially zero” means that the heights of the steps are
substantially zero.

To understand whether the probability of a node being
picked for removal is uniformly distributed, the rate of varia-
tion of our metric with respect to distance from the camera
may be analyzed, which should be constant everywhere for a
truly unbiased metric. More formally, this translates to com-
puting the second derivative of the area under the visibility
curve generated by a given set of transparent fragments (z,,a,):
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o "z
3z | vis(ddr =
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B_Z{D(l—mﬂ(z—z;))}

P n
= B_z exp ;ln(l - H(z—17))

. n @;0(z—z;)
- vzs(z)[z (- m)}

i=1

Given that a,e[0,1], the last expression is non-positive for
any z, and zero everywhere else. Moreover, since vis(z) is a
monotonically decreasing function, as we pick nodes further
away from the viewer, the second order derivative approaches
zero and consequentially A, will tend to get smaller too.
Therefore, our metric is naturally biased towards preserving
nodes that are closer to the camera in one embodiment.

Fragments that are more distant from the viewer tend to
contribute less to the final pixel color since they are more
likely to be partially covered by other fragments. Hence, it is
advantageous, in some embodiments, to have a more accurate
reconstruction of the head of the visibility curve if the only
detriment is to have less accurate approximation of the tail of
the curve.

Further, when using 16 or more nodes, many scenes may
benefit from an additional bias that preserves nodes closer to
the camera. To avoid adding more terms to our metric, in one
embodiment, we simply restrict node removal to the far half
of'the array. This modification also increases performance by
reducing the compression phase working set.

We implement, in the DirectX 11 application program
interface (API) the A-buffer transparency algorithm. This
method employs two rendering passes:

1. Render transparent geometry from the camera and cap-
ture the depth, color, and transmittance of all transparent
fragments in per-pixel linked lists.

2. A full screen resolve pass that sorts each pixel’s linked
list based on depth, and then recursively composites the
list’s fragments into the frame bufter using Equation 3.

The second rendering pass is a full-screen resolve that is
specific to the A-buffer implementation. However, it is
straightforward to replace that specific resolve with alterna-
tive transparency algorithms, each fed with the transparent
fragments captured in the first pass.

The adaptive transparency (AT) algorithm replaces A-buft-
er’s second full-screen resolve pass with a single pass with
two logically distinct phases:

1. Read fragments from the per-pixel list and insert each
new fragment into our adaptive visibility representation
(compressing it only if necessary).

2. Tterate again over each fragment, evaluating its visibility
and compositing them into the frame buffer using Equa-
tion 2.

Our algorithm need not require off-chip storage for visibility
in some embodiments: the entire representation is built and
consumed on chip as long as the target graphics processing
unit (GPU) has enough register or cache memory.

Some embodiments of the transparency algorithm can
approximate complex visibility functions with a small
amount of data that is never stored off-chip, thus narrowing
the ever growing gap between compute and memory band-
widthresources and providing a method likely to scale well in
the future generations of graphics hardware. On the other
hand, some embodiments capture all transparent fragments
rendered and require a variable amount of memory propor-
tional to the total number of transparent fragments.
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4

Referring out of FIG. 4, in accordance with some embodi-
ments of the present invention, the adaptive transparency
algorithm may be implemented in software, hardware and/or
firmware. In software embodiments, it may be implemented
using computer readable instructions stored on a non-transi-
tory computer readable medium such as a magnetic, optical or
semiconductor storage.

The sequence of FIG. 4 begins by developing a visibility
approximation for infinitely thin light blockers as indicated in
block 12. Then the step function segments are represented as
single bottom nodes as indicated in block 14. Next, nodes are
ordered by depth (block 16). The ordered nodes are stored in
a fixed length array as indicated in block 18.

A check at diamond 20 determines whether there is a
request for a new node insertion in the step function. If not, the
flow ends. Otherwise, the flow proceeds to check whether the
fixed length array is full or has reached its fixed length. If not,
the flow ends. If the array is full then a node is removed as
indicated in block 24 and a new node is inserted as indicated
in block 26.

In a second implementation compressed visibility func-
tions are built in a streaming fashion, avoiding capturing and
storing upfront all transparent fragments, and thus enabling
implementations that use a fixed and a priori knowable
amount of memory. To enable this implementation, a shader
cuncurrently read-modify-writes a visibility curve with other
shader invocations while avoiding data races. Presently, the
APIs supported by current graphics processors do not permit
per-pixel resource locks, preventing this implementation.
While this limitation is likely to be lifted in future graphics
application program interfaces, central processing units do
not suffer from this limitation and already provide a means to
implement a fixed memory version of the transparent primi-
tives rendering method presented herein.

The computer system 130, shown in FIG. 5, may include a
hard drive 134 and a removable medium 136, coupled by a
bus 104 to a chipset core logic 110. A keyboard and mouse
120, or other conventional components, may be coupled to
the chipset core logic via bus 108. The core logic may couple
to the graphics processor 112, via a bus 105, and the central
processor 100 in one embodiment. The graphics processor
112 may also be coupled by a bus 106 to a frame buffer 114.
The frame buffer 114 may be coupled by abus 107 to a display
screen 118. In one embodiment, a graphics processor 112
may be a multi-threaded, multi-core parallel processor using
single instruction multiple data (SIMD) architecture.

In the case of a software implementation, the pertinent
code may be stored in any suitable semiconductor, magnetic,
or optical memory, including the main memory 132 (as indi-
cated at 139) or any available memory within the graphics
processor. Thus, in one embodiment, the code to perform the
sequences of FIG. 4 may be stored in a non-transitory
machine or computer readable medium, such as the memory
132, and/or the graphics processor 112, and/or the central
processor 100 and may be executed by the processor 100
and/or the graphics processor 112 in one embodiment.

FIG. 4 is a flow chart. In some embodiments, the sequences
depicted in this flow chart may be implemented in hardware,
software, or firmware. In a software embodiment, a non-
transitory computer readable medium, such as a semiconduc-
tor memory, a magnetic memory, or an optical memory may
be used to store instructions and may be executed by a pro-
cessor to implement the sequences shown in FIG. 4.

The graphics processing techniques described herein may
be implemented in various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
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used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment™ are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A method comprising: representing a transparent object,
having only two light passing surfaces, in a computer as a
summation of more than two substantially zero step func-
tions, said more than two functions of a visibility curve for the
object, representative of more than one infinitely thin light
blockers that do not exist physically;

defining a plurality of substantially zero step functions

within the interior of said object; and

displaying said object using said substantially zero step

functions.

2. The method of claim 1 including representing said vis-
ibility function by using step function nodes.

3. The method of claim 2 including representing said vis-
ibility function having nodes using less than all of its nodes.

4. The method of claim 3 including representing a plurality
of steps of the visibility function using one node per step.

5. The method of claim 4 including representing the vis-
ibility function using only the bottom node of a plurality of
steps.

6. The method of claim 5 including storing a representation
of said visibility in an array whose size is limited by the
capacity of a memory of a graphics processing unit.

7. The method of claim 6 including, when the array is full,
removing a node before adding a new node.

8. The method of claim 7 including selecting a node to
remove by minimizing the change in an integral over the
visibility function.

9. A non-transitory computer readable medium storing
instructions executed by a processor to:

20

40

45

6

represent a transparent object, having only two light pass-
ing surfaces, as a summation of more than two infinitely
thin step functions, said more than two functions of a
visibility curve of the object, representative of more than
one infinitely thin light blockers that do not exist physi-
cally;

defining a plurality of substantially zero step functions

within the interior of said object; and

displaying said object using said substantially zero step

functions.

10. The medium of claim 9 further storing instructions to
represent said visibility function by using step function
nodes.

11. The medium of claim 10 further storing instructions to
represent said visibility function using less than all of its
nodes.

12. The medium of claim 11 further storing instructions to
represent a plurality of steps of the visibility function using
one node per step.

13. The medium of claim 12 further storing instructions to
represent the visibility function using only the bottom node of
a plurality of steps.

14. The medium of claim 13 further storing instructions to
store representation of said visibility function in an array
whose size is limited by the capacity of a memory of a graph-
ics processing unit.

15. The medium of claim 14 further storing instructions to
remove a node before adding a new node when the array is
full.

16. The medium of claim 15 further storing instructions to
select a node to remove by minimizing the change in integral
over the visibility function.

17. An apparatus comprising: a memory; and

a processor coupled to said memory to represent a trans-

parent object, having only two light passing surfaces, as
a summation of more than two infinitely thin step func-
tions of a visibility curve for the object, representative of
more than one infinitely thin light blockers that do not
exist physically, define a plurality of substantially zero
step functions within the interior of said object, and
display said object using said substantially zero step
functions.

18. The apparatus of claim 17 wherein said apparatus is a
graphics processing unit.

19. The apparatus of claim 18 wherein said memory is a
memory on said graphics processing unit.

20. The apparatus of claim 19 wherein the representation of
said visibility curve is stored in an array the size is limited by
the capacity of said memory.
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